周期電流可以表示為 i=f(t)=f(tkT) (1) 式中k為整數。一周期電流i可表示為時間t的周期性函數。在一時刻i的數值稱為電流在該時刻的瞬時值。式(1)中的T是周期電流重復其變動的最小時間間隔,稱為周期。每單位長時間內電流變動的周期數f=1/T,稱為頻率。其單位為秒-1,稱為赫(Hz)。
中國電力系統的標準頻率為50赫。有的國家(如美國)電力系統的標準頻率為60赫。這一頻率稱為工業頻率,簡稱工頻。在目前的科技領域從遠低于1赫到約1012赫的交流電都有著應用。
交流電的產生 交流電的產生主要有兩類方式,一類是用交流發電機產生,另一類是用含電子器件如電子管、半導體晶體管的電子振蕩器產生。
交流發電機利用電磁感應的原理產生交流電。由原動機帶動的發電機轉子上有由直流勵磁的磁極,轉子外的定子內側上設有固定的導體線圈。當轉子以一定轉速旋轉時,線圈回路中的磁通因磁極旋轉而周期地變化,于是線圈中便有交流電動勢發生。發電機輸出的電能是由輸入到原動機的能量(如對汽輪機是熱能、對水輪機是水的勢能)轉換而得來的。這種發電機是以一定的轉速n(轉/分)旋轉的,稱為同步發電機,它發出的交流電的頻率是f=Pn/60,P是發電機轉子的極對數。由于轉子的轉速受到機械強度的限制,所以用發電機產生的交流電的頻率,一般都在10000赫以下。電力系統中的交流電都是利用交流同步發電機產生的。高頻的交流電一般都是用電子振蕩器來產生的。作為能源使用的交流電幾乎都是以這兩類方式來產生的。此外,還有如壓電晶體那樣的器件能在受聲波或機械振動作用時產生交流電,由這類器件能獲得的電功率不大,可以作為電信號源用于檢測等目的。
交流電的有效值 工程上常用交流電的有效值衡量交流電的量值。周期性交流電流的有效值的定義如下:若一周期性電流i流經一線性非時變電阻R在一周期內所消耗的電能與一直流電流I 流經同一電阻值的電阻在一周期內所消耗的電能相等,則此直流電流的量值就被定義為該交流電流的有效值。據此有
(2)
于是
(3)
即一周期性電流的有效值等于該電流的方均根值。對于周期性電壓u可同樣定義其有效值
(4)
電工中常用的磁電式、電動力式測量交流電流(電壓)的儀表均指示其所測量的有效值。
正弦電流 正弦電流的數學表達式是 i=Imsin(ωt ψ) (5)其中Im是電流的最大值,即幅值,ω=2πf是交流電的角頻率,ωt ψ稱為i在時刻t的相位,ψ即是i在t=0時刻的相位,叫做初相位或初相角。隨時間作正弦式變化的物理量如電壓、磁通、電荷等都有與式(5) 相似的表達式。由式(3)得,正弦電流的有效值是
正弦交流電路 在同一頻率的正弦式電源激勵下處在穩態的線性時不變電路。正弦交流電路中的所有各電壓、電流都是與電源同頻率的正弦量。
交流電具有許多技術上、經濟上的優越性,這主要表現在:利用變壓器變換交流電壓,可以大量地遠距離地傳輸電能,而且也便于使用;利用整流設備可以方便地從交流電獲得直流電;交流電機的結構比直流電機簡單;在通信技術中可利用交流電實現信息的傳輸等等。所以,對交流電路的研究有著重要的意義。
正弦交流電路理論在交流電路理論中居于重要地位。許多實際的電路,例如穩態下的交流電力網絡,就工作在正弦穩態下,所以經常用正弦交流電路構成它們的電路模型,用正弦交流電路的理論進行分析。而且,對于一線性時不變電路,如果知道它在任何頻率下的正弦穩態響應,原則上便可求得它在任何激勵下的響應。
正弦交流電路的方程可由基爾霍夫定律和電路元件方程導出,一般是一組線性常系數微分方程。一正弦交流電路的穩態就由相應的電路方程的與電源同頻率的周期解表示。正弦交流電路分析的任務就是求出電路方程組的這種特解。計算正弦交流電路最常用的方法是相量法。運用這一方法,可以將電路的微分方程組變換成相應的復數的線性代數方程組,使求解的工作大為簡化。
對于非正弦周期性交流電路,運用諧波分析方法和疊加原理,便可分析其中的穩態。
隨時間變動的電流稱為時變電流;隨時間周期地變動的電流稱為周期性電流。在一個周期內平均值為零的周期性電流稱為交變電流或簡稱交流電。類此還可以定義交變電壓、電荷、磁通等。
晶體二極管 繼電器電動機半導體 非正弦周期電路 示波器 整流電路 電路 相量法開關電源
把一節電池的頭(正極)對著另一節的尾(負極)裝在手電筒中,手電筒就亮了:如果倒過來,頭對頭或尾對尾,手電筒就不亮。這是因為電池所產生的電流總是朝一個方向流動,所以叫做直流電。通過輸電線或電纜送入家中的...
以正弦為例,設正極板1 電壓從0升到正最大,則電容的正負極板都開始充電且隨著電路電壓升高而升高。2 電壓從正最大到0,則電容的正負極板開始放電,且隨著電路電壓降低而降低到0。3 電壓從0到負最大,則電...
暈,當然不可以,樓上兩位不要誤人子弟哈交流電表里一般都有整流部分,讀出來的數據就不準了,都不準了,你還能用嗎?
交流電路變化
?指交流電路里電阻、電感、電容、歐姆定律等幾個參數變化
純電阻電路是最簡單的一種交流電路。白熾燈、電爐、電烙鐵等的電路都可以看成是純電阻電路。雖然 純電阻的電壓和電流都隨時間而變,但對同一時刻,歐姆定律仍然成立,即的波形如圖3-49b所示。對純電阻電路有:(1)通過電阻R的電流和電壓的頻率相同;(2)通過電阻R的電流峰值和電壓峰值的關系是
的電流和電壓同位相。圖3-49a為純電阻電路示意圖。
如圖3-50所示,一個忽略了電阻的空心線圈和交流電流源組成的電路稱為“純電感電路”。在純電感電 路中,電感線圈兩端的電壓u和自感電動勢eL間(當約定它們的正方向相同時)有
u=-eL
因自感電動勢
故有
如果電路中的電流為正弦交流電流i=Imsinωt,則
其中Um=ImωL為電感兩端電壓的峰值。純電感電路中的電壓和電流波形如圖3-51所示。由此可見,對于純電感電路:(1)通過電感L的電流和電壓的頻率相同;(2)通過電感L的電流峰值和電壓峰值的關系是
Um=ImωL
其有效值之間的關系為
U=IωL
由上式可知,純電感電路的電壓大小和電流大小之比為
ωL稱為電感元件的阻抗,或稱感抗,通常用符號XL表示,即
XL=ωL=2πfL。
式中,頻率f的單位為赫茲,電感L的單位為亨利,感抗XL的單位為歐姆。這說明,同一電感元件(L一定),對于不同頻率的交流電所呈現的感抗是不同的,這是電感元件和電阻元件不同的地方。電感元件的感抗隨交流電的頻率成正比地增大。電感元件對高頻交流電的感抗大,限流作用大,而對直流電流,因其f=0,故XL=0,相當短路,所以電感元件在交流電路中的基本作用之一就是“阻交流通直流”或“阻高頻通低頻”。各種扼流圈就是這方面應用實例;(3)在純電感電路中,電感兩端的電壓位相超前其電流位
的變化成正比,而不是和電流的大小成正比。對于正弦交流電,當電流i
當電流為零時,其變化率為最大,電壓也最大。所以兩者的相
當把正弦電壓u=Umsinωt加到電容器時,如圖3-52所示,由于電壓隨時間變化,電容器極板上的電量也 隨著變化。這樣在電容器電路中就有電荷移動。如果在dt時間內,電容器極板上的電荷變化dq,電路中就要有db的電荷移動,因此電路中的電流
對電容器來說,其極板上的電量和電壓的關系是
q=CU
因此有
其中Im=UmωC為電路中電流的峰值。純電容電路中的電壓和電流波形如圖3-53所示。由此可見,對于純電容電路:(1)通過電容C的電流和電壓的頻率相同;(2)通過電容C的電流峰值和電壓峰值的關系是
Im=UmωC
其有效值之間的關系為
I=UωC
由上式可知,純電容電路中的電壓大小與電流大小之比為
表示,即
式中頻率f的單位為赫茲,電容C的單位是法拉,容抗Xc的單位為歐姆。可見,同一電容元件(C一定),對于不同頻率的交流電所呈現的容抗是不同的。由于電容器的容抗與交流電的頻率成反比,因此頻率越高,容抗就越小,頻率越低,容抗就越大。對直流電來講f=0,容抗為無限大,故相當于斷路。所以電容元件在交流電路中的基本作用之一就是“隔直流,通交流”或“阻低頻,通高頻”;(3)
率成正比,而不是和電壓的大小成正比。對于正弦交流電,當電壓為零
·概述
在交流電路中,電壓、電流的峰值或有效值之間關系和直流電路中的歐姆定律相似,其等式為U=IZ或I=U/Z,式中Z、U都是交流電的有效值,Z為阻抗,該式就是交流電路中的歐姆定律。
·記明
由于電壓和電流隨元件不同而具有相位差,所以電壓和電流的有效值之間一般不是簡 單數量的比例關系。
A.在串聯電路中,如圖所示,以R、L、C為例,總電壓不等于各段分電壓的和,U≠UR+ UL + UC。因為電感兩端電壓相位超前電流相位導電容兩端電壓相位π/2,落后電流相位π/2。所以R、L、C上的總電壓,決不是各個元件上的電壓的代數和而是矢量和。
以純電阻而言,ZR=R
B.在并聯電路中,如圖所示,以R、L、C為例,每個元件兩端的瞬時電壓都相等為U。
每分路的電流和兩端電壓之間關系為不同元件上電流的相位也各有差異。
純電感上電流相位落后于純電阻電流相位·爭純電容上電流相位超前純電阻電流相位署。所以分電流的矢量和即總電流
由于三相交流電在生產、輸送和應用等方面有很多優點,因此建筑物中的供電、配電和用電均是組成三相交流電路來進行。
三相交流電路中的電源有三個,每一個電源稱為一相電源,一般稱為A、B、C三相電源。
三相電源向外供電是采用三相三線制、三相四線制或三相五線(增加一條接地保護線)的形式。
所謂三相四線制就是三根相線(火線)一條中性線(零線)的供電體制。
對稱的三相交流電路中,相電勢、線電勢、線電壓、相電壓、線電流、相電流的大小分別相等,相位互差120度,三相各類量的向量和、瞬時值之和均為零。三相繞組及輸電線的各相阻抗大小和性質均相同。在星形接線中,相電流和線電流大小、相位均相同。線電壓等于相電壓的√3倍,并超前于有關的相電壓30度。在三角形接線中,相電壓和線電壓大小、相位均相同。線電流等于相電流的√3倍,并滯后于有關的相電流30度。三相總的電功率等于一相電功率的3倍且等于線電壓和線電流有效值乘積的√3倍,不論是星形接線或三角形接線。