鍍膜。
極限真空度:≤4x10-5 Pa (經12小時烘烤除氣后); 系統真空檢漏漏率:≤5.0x10-7 Pa.l/S; 系統從大氣開始抽氣,60分鐘可達到5x10-4 Pa;。
冷卻液的作用把點火產生的高溫通過水道傳遞到散熱器,再由風扇強制通風散熱,把水溫溫度始終控制在110度以內!
DEH系統主要功能: 汽輪機轉速控制;自動同期控制;負荷控制;參與一次調頻;機、爐協調控制;快速減負荷;主汽壓控制;單閥控制、多閥解耦控制;閥門試驗;輪機程控啟動;OPC控制;甩負荷及失磁工況控制;...
⒈保水.保水劑不溶于水,但能吸收相當自身重量成百倍的水.保水劑可有效抑制水分蒸發.土壤中滲入保水劑后,在很大程度上抑制了水分蒸發,提高了土壤飽和含水量,降低了土壤的飽和導水率,從而減緩了土壤釋放水的速...
格式:pdf
大小:11KB
頁數: 1頁
評分: 4.5
道閘 主要功能: 功能一,手動按鈕可作 ‘升’‘降’及‘停’操作、無線遙控可作 ‘升’‘降’‘停’及對手動按鈕的 ‘加鎖’‘解鎖 ’操作 ; 功能二,停電自動解鎖,停電后可手動抬桿 ; 功能三,具有便于維護與調試的 ‘自檢模式 ’; 道閘 道閘又稱擋車器,最初從國外引進,英文名叫 Barrier Gate ,是專門用于道路上限 制機動車行駛的通道出入口管理設備 ,現廣泛應用于公路收費站、 停車場系統 管理車 輛通道,用于管理車輛的出入。電動道閘可單獨通過無線遙控實現起落桿,也可以通過 停車場管理系統 (即 IC 刷卡管理系統)實行自動管理狀態,入場取卡放行車輛,出場 時,收取 停車費 后自動放行車輛。
格式:pdf
大小:11KB
頁數: 4頁
評分: 4.4
智能配電柜主要功能 摘要 : 對于智能配電柜稍微接觸比較多的人,應該能感覺到智能配電柜 的很多性能相對于傳統配電柜是具有很多優勢的。但對于具體有哪些優勢并 不怎幺清楚。同時,對于智能配電柜功能有哪些也不怎幺清楚。 對于智能配電柜稍微接觸比較多的人,應該能感覺到智能配電柜的很多性 能相對于傳統配電柜是具有很多優勢的。但對于具體有哪些優勢并不怎幺清 楚。同時,對于智能配電柜功能有哪些也不怎幺清楚。 因此,本文將對智能配電柜較傳統配電柜優勢進行分析: 1、對于傳統的配電柜只具備配電管理的功能,將電源分配到負載機柜之 上;而智能配電柜,除了配電管理之外,還具有運行管理和安全管理的功 能,有效的提高整個配電系統可靠性,降低風險。 2、傳統配電柜使用的指針式儀表或數顯式儀表,只能有限的監測配電柜 的參數,滿足基本的需要,智能配電柜采用高集成度,高可靠性的計算機主 板,全面的監測系統的各項運行參數,并通
鍍膜厚度2-3微米;摩擦系統小于0.15。
當今國內外表面技術的發展和實際應用,應把各類表面技術作為一個系統工程進行優化設計和優化組合。
表面復合鍍膜處理從技術上看,這種優化組合在很大程度上就是一種“表面復合處理”技術。在強束流的金屬離子注人技術不理想的條件下,運用鍍膜與離子注人的復合,即離子反沖注人技術; 先用離子束輔助涂覆(IAC),再用輕離子的離子束轟擊涂層表面,使徐層元素部分混人基體。
因轟擊中的離子和涂層中的金屬原子間的化學反應,使涂層部分地或全部地轉變成氮化物或氧化物,使涂層性能得到提高; 用離子輔助沉積(AD) 在鋼、鎳、碳纖維增強鋁合金及Si3Al 上沉積Si3N4 梯度薄膜。目前已沉積出一側具有熱、電絕緣性能,而另一側具有導電、導熱性能的薄膜材料。用激光、電子束與氣相沉積技術復合,如在Al上沉積的Ti或Al粒子,在通入N2或O2的同時,用CO2激光照射,可在AI 表面上形成高硬度的TIN或Al2O3,使AI 的耐磨性能提高103~ 10倍。
光學薄膜在高真空度的鍍膜腔中實現。常規鍍膜工藝要求升高基底溫度(通常約為300℃);而較先進的技術,如離子輔助沉積(IAD)可在室溫下進行。IAD工藝不但生產比常規鍍膜工藝具有更好物理特性的薄膜,而且可以應用于塑料制成的基底。圖19.11展示一個操作者正在光學鍍膜機前。抽真空主系統由兩個低溫泵組成。電子束蒸發、IAD沉積、光控、加熱器控制、抽真空控制和自動過程控制的控制模塊都在鍍膜機的前面板上。圖19.12示出裝配在高真空鍍膜機基板上的硬件布局。兩個電子槍源位于基板兩邊,周圍是環形罩并被擋板覆蓋。離子源位于中間,光控窗口在離子源的前方。圖19.13示出真空室的頂部,真空室里有含6個圓形夾具的行星系統。夾具用于放置被鍍膜的光學元件。使用行星系統是保證被蒸發材料在夾具區域內均勻分布的首選方法。夾具繞公共軸旋轉,同時繞其自身軸旋轉。光控和晶控處于行星驅動機械裝置的中部,驅動軸遮擋晶控。背面的大開口通向附加的高真空泵。基底加熱系統由4個石英燈組成,真空室的兩邊各兩個。
薄膜沉積的傳統方法一直是熱蒸發,或采用電阻加熱蒸發源或采用電子束蒸發源。薄膜特性主要決定于沉積原子的能量,傳統蒸發中原子的能量僅約0.1eV。IAD沉積導致電離化蒸汽的直接沉積并且給正在生長的膜增加活化能,通常為50eV量級。離子源將束流從離子槍指向基底表面和正在生長的薄膜來改善傳統電子束蒸發的薄膜特性。
薄膜的光學性質,如折射率、吸收和激光損傷閾值,主要依賴于膜層的顯微結構。薄膜材料、殘余氣壓和基底溫度都可能影響薄膜的顯微結構。如果蒸發沉積的原子在基底表面的遷移率低,則薄膜會含有微孔。當薄膜暴露于潮濕的空氣時,這些微孔逐漸被水汽所填充。
填充密度定義為薄膜固體部分的體積與薄膜的總體積(包括空隙和微孔)之比。對于光學薄膜,填充密度通常為0.75~1.0,大部分為0.85~0.95,很少達到1.0。小于l的填充密度使所蒸發材料的折射率低于其塊料的折射率。
在沉積過程中,每一層的厚度均由光學或石英晶體監控。這兩種技術各有優缺點,這里不作討論。其共同點是材料蒸發時它們均在真空中使用,因而,折射率是蒸發材料在真空中的折射率,而不是暴露于潮濕空氣中的材料折射率。薄膜吸收的潮氣取代微孔和空隙,造成薄膜的折射率升高。由于薄膜的物理厚度保持不變,這種折射率升高伴有相應的光學厚度的增加,反過來造成薄膜光譜特性向長波方向的漂移。為了減小由膜層內微孔的體積和數量所引起的這種光譜漂移,采用高能離子以將其動量傳遞給正在蒸發的材料原子,從而大大增加材料原子在基底表面處凝結期間的遷移率。