同江黑龍江鐵路特大橋位于黑龍江省同江市哈魚島至俄羅斯聯邦猶太自治州下列寧斯闊耶之間,連通向陽川 ~ 哈魚島鐵路與俄羅斯西伯利亞鐵路列寧斯闊耶支線鐵路。該橋是第一座跨越中、俄界河黑龍江的鐵路大橋,大橋在中國境內采用了 16 孔 108 m 鋼桁梁。在我國鐵路鋼桁梁設計中應用較多的橋面系形式有明橋面、鋼 - 混凝土結合橋面、正交異性板等。長期的設計實踐及研究表明,以往的明橋面難以滿足現行規范對剛度和行車舒適度的要求,而且車輛通過時噪聲較大; 鋼 - 混凝土結合橋面板結構的二期恒載重量比明橋面大很多,導致鋼梁橋的用鋼量大幅增加,而且鋼筋混凝土板本身存在收縮、徐變問題,同時橋面系參與主桁整體作用而使混凝土板承受拉力,容易出現裂縫; 正交異性鋼橋面板在提高橋梁剛度、參與鋼梁整體受力方面優點顯著,但其造價較高,對于普速的鋼桁。因此,為了滿足中俄兩國的梁橋,經濟性較差接軌條件和運營要求,根據技術經濟比較結果并經中俄雙方協商,中俄同江黑龍江鐵路特大橋采用了縱橫梁栓接先張法預應力混凝土套軌道床板的輕型,俄羅斯軌距為 1 520 mm,我國軌距為橋面結構1435 mm。
1. 1 設計概況
同江橋 108 m 鋼桁梁主桁采用帶豎桿的三角形桁架,桁高15 m,主桁中心距為8 m,上、下弦桿均采用箱型截面,截面高度均為850 mm,斜腹桿采用箱型截面,豎桿采用工字型截面。端斜桿中間設置橋門架。橋面系采用縱橫梁體系,端節間、次端節間長10.5 m,其余節間長11 m。縱梁設計為連續縱梁,不設置斷縫,兩片縱梁之間設置橫向聯結系,在下弦桿節點處設置橫梁,預應力混凝土軌道板與縱梁上翼緣螺栓連接。縱橫梁為等高的工字型截面,端橫梁高為1580 mm,縱梁及其余橫梁全高1600 mm。縱梁翼緣板寬度為550 mm,端橫梁翼緣板寬580 mm,次端節間橫梁翼緣板寬500 mm,其他橫梁翼緣板寬420 mm。橫梁在與縱梁相接處設置接頭構造,縱梁腹板及翼緣板均通過魚形板與接頭構造的腹板、翼緣板栓接。在端節間設置變高度工字型撐架結構高度由 850 mm變至1 600 mm,翼緣板寬360 mm,連接至下弦桿節間中點與縱橫梁交接處之間,接頭處采用拼接板栓接。上平縱聯采用高度為480 mm 的工字型截面交叉式腹桿體系,對應橫聯處設置橫撐。下平縱聯采用交叉式腹桿體系,與縱梁相交處,均與縱梁的下翼緣板采用螺栓連接。下平縱聯桿件均采用T 型截面,連接時僅拼接翼緣板。該橋地處東北嚴寒地區,如果采用整體節點,焊縫疲勞應力幅較難控制,因此本鋼梁所有節點均采用高強螺栓連接的散拼節點形式。
1. 2 縱梁連續的必要性
一般情況下,鋼桁梁長度超過 80m 時,縱梁應設置縱梁斷縫,以減小縱梁、橫梁內力,減小橋面系參與結構主體的受力作用及縱橫梁與下弦桿的變形。縱梁斷縫是一種特殊結構,活動縱梁的端部是通過一種特制的活動支座支承于縱梁斷縫處的短伸臂上。縱梁活動端可以縱向滑動和豎向扭轉,但不允許行車過程中縱梁活動端出現上下跳動,為了避免這種情況的發生,特設置一塊鉸板把縱梁活動端連在短伸臂上。
但近年來,在日常設備養護及檢查中經常發現活動縱梁支座處出現不同程度的病害。例如,上海鐵路局在對南京長江大橋的檢查中發現,大橋5 號孔活動縱梁伸縮端在來車狀態下出現異常跳動,活動支座上下擺動出現嚴重拍擊現象,并且連接縱梁短伸臂和縱梁活動端的特制鉸板已嚴重變形,鉸板中部也嚴重隆起,隆起度達8 mm,而且其他9 孔鋼桁梁中有4 孔也發生了此類病害。濟南鐵路局在對曹家圈黃河特大橋的維修養護中發現,鋼梁橋活動縱梁處的弧形支座和卡板在列車活載作用下出現上下部緊貼的變形病害,隨著行車速度的提高和貨運載重的增加,此類病害逐步發展,而且活動縱梁的橫向聯結系中斜桿、橫桿與鉸板三者交匯處的節點板發生了斷裂現象 。類似病害在其他地區鐵路鋼桁梁上也時有發現,這些病害直接影響著大橋的使用壽命及行車安全,而且不能中斷鐵路運營,維修加固工作十分復雜,養護費用較高。考慮到以上因素,同時為適應套軌道床板的縱向布置、減少橋梁結構養護維修工作量及提高軌道的平順性,本橋橋面系縱梁設計為連續結構,不設置活動縱梁,受力檢算時考慮縱、橫梁橋面系參與主桁共同作用,并通過在端節間設置撐架結構來協調橋面系的受力和變形狀態。
2.1 結構計算模型
108m 簡支鋼桁梁結構計算采用MIDAS CIVIL 進行,共建有兩個模型:一個是全橋空間計算模型,該模型分為縱梁設置斷縫、縱梁連續不設置端節間撐架、縱梁連續設置端節間撐架三種類型;另一個是主桁平面計算模型。兩個模型在計算過程中采用相同的材料本構關系、荷載組合。
空間模型考慮縱橫梁、下平聯參與共同作用,分階段施工,消除主桁結構一期恒載引起的橋面系共同作用,用于縱橫梁、上下平聯、橫聯設計。該模型以結構理論線形為基準進行結構離散,各桿件均采用空間梁單元進行模擬。主桁桿件節點、上平聯與主桁連接均按剛接模擬;橫梁梁端與主桁的連接按橫梁釋放面外彎矩考慮; 下平聯與下弦桿、下平聯各桿件之間均按鉸接模擬。支座均采用一般支承進行模擬。空間模型全橋共劃分為987 個單元、492 個節點。
平面模型不考慮縱、橫梁、下平聯參與共同作用,用于主桁桿件的結構內力計算,邊界條件取自空間模型的計算結果。該模型以結構理論線形為基準進行結構離散,主桁各桿件均采用梁單元進行模擬。橋面板等二期恒載重量均以節點荷載均勻施加在主桁上。支座以一般支承進行模擬。平面有限元模型共劃分為71個單元、57 個節點。
2.2 縱梁連續的影響
縱梁連續設計使橋面系順橋向剛度增強,參與鋼桁梁整體受力的作用增強,這必然對主桁的受力造成一定的影響。根據上節建立的有限元模型,對橋面系是否參與整橋受力、縱梁是否設置斷縫等情況進行了檢算,以研究橋面系的設置形式對主桁及其自身受力的影響情況。數據表明:
第一,在恒載作用下,不考慮橋面系參與鋼梁整體受力時,主桁上、下弦桿最大軸力分別為-6 381.96 kN、6637.61 kN;考慮橋面系參與鋼梁整體受力時為-6 200.08 kN、4 283.24 kN,分別比前者減少約2.8% 、35.5% 。
第二,在活載作用下,不考慮橋面系參與鋼梁整體受力時,主桁上、下弦桿最大軸力分別為-4 784.34 kN、4966.11 kN;考慮橋面系參與鋼梁整體受力時為-3 986.69 kN、2 708.35 kN,分別比前者減少16.7% 、45.5% 。
第三,在恒載、活載作用下,不考慮橋面系參與鋼梁整體受力時主桁跨中最大豎向位移分別為93.8 mm、70.7 mm,考慮橋面系參與鋼梁整體受力時分別為78.6 mm、50.5 mm,分別比前者減少約16.2% 、28.6% 。
第四,在恒載 活載作用下,縱梁連續及斷開時縱梁最大軸力分別為2 191.1 kN、1 255.59 kN,后者為前者的57.3% 。
由此可見,縱梁連續對108 m 鋼梁整體受力有顯著影響,緩解了主桁桿件的受力狀態。考慮縱梁參與鋼梁整體受力后,主桁桿件的內力值有所減小,尤其是下弦桿減小幅度較大,而減小的這部分內力則由橋面系等桿件承擔,縱梁軸力明顯增大,伴隨著端節間橫梁面外彎矩必然增大,因此橋面縱橫梁設計時應較縱梁斷開設計時適當的增強。
由于縱梁的連續,使縱梁軸力增大,橫梁面外彎矩增大,在運營活載的反復作用下,橫梁變形過大,容易發生疲勞破壞。為此,通過對比研究,在端節間設置變高度工字型截面的撐架結構,縱梁傳來的軸力在梁端節間通過撐架分散傳遞至下弦桿。
數據表明:
第一,設置端節間撐架后,縱梁最大軸力由 2 191.1 kN增大至 2 446. 5 kN,增大了約 11. 7% ,但橫梁面外彎矩及水平撓度均有較大幅度的減小,其中端橫梁面外彎矩由 317 kN·m 降至 117 kN·m,減小約 63.1% ,水平撓度由 5.1 mm 減少至 1.7 mm,減少約 66.7% 。
第二,端節間撐架的設置,對縱梁的面內彎矩、撓度以及橫梁的軸力、面內彎矩影響較小,除端節間局部受到撐架的影響外,其他節間的計算結果幾乎相同。由此可見,端節間撐架的設置雖然引起了縱梁軸力的小幅度增加,但卻大幅度的改善了橫梁的受力及變形狀態。而縱梁軸力的增加可以通過適當增大縱梁截面的方式進行解決。
通過以上的分析對比,了解了橋面系設置連續縱梁對結構整體受力及變形的影響程度,掌握了設置端節間撐架對橋面系受力及變形的改善情況。要得知這種橋面系結構形式是否能夠滿足運營荷載的需求,就需要對全橋進行一個全面的檢算。該橋運營中、俄兩國列車,需要采用中、俄兩國規范對橋面系桿件進行檢算。中國規范是基于容許應力法,而俄羅斯規范則是基于可靠度理論的極限狀態法,兩國規范在理論體系、活載標準、材料技術條件及構造要求等方面存在著相當大的差異本文根據中俄兩國規范對 108 m 鋼桁梁桿件的疲勞特性、強度、剛度、穩定性等性能進行了檢算。本橋全新構造形式的橋面系在運營荷載作用下,各項性能指標均能滿足中、俄兩國規范的要求,說明在該鋼桁梁橋面系中設置連續縱梁是可行的。
結合同江黑龍江鐵路特大橋108 m 鋼桁梁橋面系的設計過程,分析了橋面系采用連續縱梁時對鋼梁整體受力的影響程度,研究了端節間撐架結構對橋面系縱橫梁受力的改善作用,并根據中、俄兩國規范檢算了橋面系桿件在運營荷載作用下的受力情況,結果表明:
(1)采用連續縱梁時,橋面系參與鋼梁整體受力的作用增強,主桁的受力得到一定的分擔,緩解了主桁的受力狀態,對上弦桿的受力影響較小,腹桿次之,下弦桿最大,這是下弦桿與橋面系縱橫梁一起形成受力共同體的緣故。
(2)采用連續縱梁時,橋面系的順橋向剛度增大,縱梁的軸拉力明顯增加,從而引起橫梁特別是端橫梁的面外彎矩增大,水平撓度增大。
(3)端節間設置撐架結構后,引起縱梁軸拉力小幅增加,但卻大幅度減小了橫梁的面外彎矩及水平撓度,使橫梁的受力更加合理。縱梁截面需適當增大,以適應其自身受力的需要。
(4)在運營階段橋面系桿件的疲勞、強度、剛度、穩定性檢算結果滿足中、俄兩國規范要求,同江黑龍江鐵路特大橋108 m 鋼桁梁橋面系中設置連續縱梁是可行的。
丫髻沙特大橋是廣州市環城高速公路西南環跨越珠江南航道的一座特大橋,于2000年6月建成通車,主橋為76m 360m 76m 三跨連續中承式鋼管混凝土拱橋。主拱及橋面系鋼結構采用16Mnq鋼,拱肋填充C60微膨脹混凝土,橋面系為橫梁體系,橫梁最大長度為 38m ,橫梁上鋪設跨度8m 的鋼筋混凝土板,橋面由厚8cm 的鋼纖維混凝土和厚4cm的瀝青混凝土組成。邊拱拱肋為內包勁性骨架的C50混凝土結構,拱上立柱為鋼管混凝土立柱。吊桿間距8m,采用單根91-7平行鋼絲索;系桿采用37束7-5鋼絞線索,全橋共20根。
2006年、2009年分別對該橋進行了檢測,結果表明大橋整體受力處于彈性工作狀態,主拱、拱座等主要構件狀況良好,但橋面系鋼橫梁陸續出現較多結構裂縫,且裂縫有進一步發展的趨勢。為保證大橋結構和運營安全,系統地開展了橋面系病害原因分析和橋面系加固設計。
橋面系主要病害以橫梁和縱梁為主,且二者連接處病害最為嚴重。主要病害有高強螺栓松動、斷裂、脫落;縱梁與橫梁的連接角鋼開裂、斷裂;橫梁腹板與下翼緣板的水平焊縫開裂,部分裂縫已往腹板延伸;部分連接腹板角鋼下排螺栓孔處腹板斜向開裂;部分橫梁加勁肋下緣處腹板開裂;檢查車軌道梁與縱梁的連接螺栓多處松動、斷裂及脫落等。
3.1 全橋整體工作狀態分析
橋梁加固前對全橋進行了動、靜載試驗,試驗結果表明主橋結構整體處于彈性工作狀態,主拱整體工作狀態與成橋荷載試驗測試結果相比未發現異常狀況。
3.2 車輛荷載分析
該橋為廣佛及附近港口的重要物流通道,據稱重數據統計,該橋的車流量在11萬輛/日以上,其中總重在55t以上的車輛超過1萬輛,總重超過100t的車輛也經常出現,最大總重170多噸,實際車輛荷載已經超出設計荷載,該橋處于超載運營狀態。考慮實際的車型和載重,估算通過的重車車重約170t,普通貨車30t居多,據此組合了7種車輛活載組合組合16×55t組合23×20t 110t 30t 30t組合33×20t 110t 55t 30t組合43×20t 110t 55t 55t組合53×30t 110t 30t 30t組合63×30t 110t 55t 30t組合73×30t 110t 55t 55t作為實際荷載進行驗算。
3.3 橫梁病害分析
該橋采用飄浮橋面結構體系,中跨橋面系相當于在吊桿處為彈性支撐的連續梁,橋面系在主跨各節間的截面尺寸基本相同,各橫梁受力狀況基本相同,因此以 H5橫梁為例分別按原設計標準和實際荷載進行計算分析。
3.3.1 按原設計標準計算
原設計采用的汽車荷載為汽車-超20級。按原設計標準計算 H5橫梁的應力情況,跨中截面下翼緣最大應力。
3.3.2 按實際荷載模擬計算
按實際荷載(7種車輛活載組合)模擬計算 H5橫梁的應力情況。在7種實際車輛組合下,H5橫梁下翼緣在活載作用下的應力為105~149MPa,恒載 活載作用下的應力為228~272MPa均超過允許應力值。參照美國公路橋梁設計規范關于鋼結構疲勞的條文規定,疲勞壽命與疲勞應力幅的立方成反比。該橋設計疲勞車輛按20t考慮,鋼橫梁的活載應力為43.2MPa,但根據現場車流量統計,橋面實際運營的代表車輛為55t的貨車,鋼橫梁活載應力為105MPa,實際疲勞應力與設計值之比為2.43,疲勞壽命只有設計壽命的1/14。由此可見,由于該橋為橫梁體系,汽車荷載增加引起橋面系橫梁的應力增加,大大降低了鋼結構的疲勞性能是引起病害的主要原因。
3.4 縱梁病害分析
該橋橫梁與混凝土橋面板組成鋼-混組合體系以承受橋面荷載,鋼縱梁兼作橋下檢查小車的軌道支撐梁,采用高強螺栓連接在橫梁上。連接處的應力較大,是導致縱梁和橫梁連接破壞的主要原因。
4.1 技術標準
考慮設計標準的一致性,加固設計活載維持原設計荷載標準不變,采用汽車-超20級,但需按實際汽車荷載工況對結構進行驗算。全橋計算時6車道折減系數取0.55,鋼橫梁內力計算時6車道折減系數取0.75。
4.2 加固措施
(1)增設止裂孔。為防止已經出現的鋼結構裂紋繼續發展,在裂紋末端增設 12mm的止裂孔,以阻止裂紋繼續延伸。
(2)增加鋼橫梁截面。為增強橫梁截面、降低橫梁應力,在橫梁下翼緣的上側增設厚32mm的鋼板。鑒于部分橫梁腹板與下翼緣焊縫出現裂紋,為保證橫梁的結構安全,在厚32mm的加強板上側設L形構件與橫梁腹板及下翼緣連接,以替代失效焊縫,連接采用高強螺栓。
(3)增設大縱梁。為增強橋面系結構的整體性能,加固方案在原有橋面系橫梁之間增設大縱梁,解除原橋的縱梁,新增大縱梁高1.7m,與橫梁同高。吊桿范圍內大縱梁緊鄰吊桿設置,縱梁腹板通過拼接板與橫梁豎肋連接,縱梁翼緣通過魚形板連接;吊桿區域以外大縱梁采用腹板不連接,縱梁下翼緣與橫梁下翼緣通過高強螺栓連接的方式與橫梁連接 。
(4)改造原鋼縱梁、橫梁連接構造。將原設置于橫梁下翼緣上部的縱梁切短3cm 后倒置與橫梁下翼緣采用普通螺栓連接。
5.1 主拱分析
該橋加固后橋面系恒載增加,需要驗算主拱的成橋主拱上弦拱肋應力荷載工況主拱上弦拱肋計算應力/MPa承載能力。采用 ANSYS10建立全橋有限元模型,主拱采用空間桿系結構模擬,桿件采用空間梁單元模擬,在桿件相交處設置空間節點,全橋共有節點1820個。主拱肋按每4m間設置梁單元,每根腹桿為1個梁單元,每個米字形橫向聯結系有109個單元,全橋共有單元3906個。加固設計新增約14000kN橋面恒載后,主拱的穩定性、應力水平等滿足規范要求,橋面系加固不影響主拱結構安全。
5.2 加固后橋面系分析
5.2.1 實際荷載工況下的橫梁應力計算
按實際荷載(7種車輛活載組合)計算加固后H5橫梁的應力情況,跨中截面下翼緣最大應力計算結果可知,加固后的橫梁下翼緣最大應力比加固前降低30~45MPa,顯著降低了橫梁應力水平和應力幅,且橋梁后續收縮徐變荷載下結構應力水平增幅較少。由于大橋加固后進行了超載診治,實際應力水平應小于上述計算值,結構的安全度有了較大提高。
5.2.2 橫梁荷載試驗分析
橫梁荷載試驗采用2輛重約40t的車輛進行加載,在試驗橫梁跨中截面布置測點。
(1)橫梁撓度。經測量,位于下翼緣的3號測點的撓度加固前理論值與實測值分別為9.6mm、8.7mm,校驗系數為0.91;加固后理論值與實測值分別為7.1mm、7.2mm,校驗系數為1.02,滿足結構荷載試驗相關規程要求,且加固后實測結構撓度比加固前降低17%。
(2)結構應變。對橫梁跨中應變進行了加固前、后的試驗對比,加固前、后應變沿高度方向分布見圖7。由圖7可知,橫梁新增構件和原橫梁協同工作狀況良好,在不考慮混凝土橋面板參與整體作用的前提下,結構加固后實測應變及截面中性軸高度均有所下降,主要與加固構件參與整體受力有關,結構應變加固前后降低幅度與理論計算值接近,結構加固達到預期效果。
丫髻沙大橋采用橫梁體系,由于實際汽車荷載超出設計荷載,橫梁應力增加,大大降低了鋼結構的疲勞性能,因此引起了一系列橋面系病害。通過分析病害原因,除采取超載診治措施外,同時對該橋橋面系進行加固設計,主要措施有增加鋼橫梁截面,增設大縱梁,改造原鋼縱、橫梁連接構造和增設止裂孔等,大橋于2011年底完成加固施工,加固達到預期效果。該橋橋面系加固設計可為同類橋梁工程加固提供借鑒和參考。 2100433B
橋面系【floor system;bridge decking】指的是上部結構中,直接承受車輛、人群等荷載并將其傳遞至主要承重構件的橋面構造系繞,包括橋面鋪裝、橋面板、縱梁、橫梁、人行道等。 橋面...
出整套圖紙咯,定結構尺寸,配鋼束或鋼筋。其他附屬結構等等。橋面系【floor system;bridge decking】指的是上部結構中,直接承受車輛、人群等荷載并將其傳遞至主要承重構件的橋面構造系...
出整套圖紙咯,定結構尺寸,配鋼束或鋼筋。其他附屬結構等等。 橋面系【floor system;bridge decking】指的是上部結構中,直接承受車輛、人群等荷載并將其傳遞至主要承重構件的橋面構...
格式:pdf
大小:278KB
頁數: 30頁
評分: 4.4
榆林大道建設項目 分項工程開工報告 (第 25 號) 合 同 段: N4 工程名稱: 開源大道東橋 上部構造現場澆筑、橋面系及附屬工程 里程樁號: K3+967.5 榆林大道(南段) N4 合同段項目經理部 2012年 5月 4 日 榆林大道(南段)建設項目 N4 合同段 開源大道東橋上部構造現場澆筑、橋面系及附屬工程開工報告 陜西基泰集團建設有限公司 1 目 錄 分項工程開工申請表 ................................................................................................... 3 分項工程工程量表 ..........................................................................................
格式:pdf
大小:278KB
頁數: 4頁
評分: 4.4
轉體施工的寬橋面鋼主梁斜拉橋通常適用于道路以小角度跨越既有鐵路等大型控制點.斜拉橋索塔結構形式對橋梁造價、轉體重量、施工便捷性和美觀性等方面有較大的影響.以某獨塔斜拉橋為工程背景,計算和比較了4種索塔結構形式,最終選用合適的花瓶形索塔(分離式下塔柱)形式.
直讀式粉塵濃度測量儀以β射線吸收法為原理設計,采用低能β射線源,集探測系統、控制系統、電源系統、采樣系統、單片機系統為一體,裝有射流數字流量傳感器和目前最先進的在線編程式單片機,把采樣和測量一起完成,可以在現場快速測定粉塵濃度,直接讀數。該儀器有通用型儀表和本安防爆型儀表兩種已經取得計量器具生產許可證資格和煤炭安全標志準用資格,適合于煤礦井下、其它礦山、車間作業場所等任何場合的測塵需要。還可以根據用戶的特殊需要,將采樣頭進氣方向由水平方向改為垂直方向即可用于環保部門進行大氣粉塵監測。
反映在開松后半制品(纖維卷或纖維層)各項質量指標和落物情況上。這包括:①半制品中雜質和疵點的種類和數量;②半制品的結構和均勻度;③半制品中短纖維的含量;④纖維塊的開松度,以纖維塊的平均重量(克/塊)、單位體積重量(公斤/米3)或纖維塊在空氣中自由沉降的終末速度等表示;⑤落物中含有可紡纖維的數量。 為了進一步提高纖維原料的開松質量和改善成紗品質,開松工藝的主要發展方向是:改進開松機件的形式和結構,廣泛采用刺輥、梳針打手或梳針滾筒等分梳機件,提高纖維塊的開松度,改善半制品的結構和均勻度;加強纖維原料的預開松,在開松過程中,多用自由打擊,盡量少用握持打擊;應用氣流和其他的開松除雜方法,避免纖維損傷和雜質碎裂,以減少由此造成的成紗疵點。
輥片機是將金屬通過碾壓,使金屬變薄,最終得到所需要的厚度的加工設備,也可在輥上面開相應的槽,以壓出不同形狀的金屬線條,鏡面輥的壓片機則可以作為最后的碾壓步驟,使金屬表面呈鏡面效果。輥片機適用于加工黃金、K金、純銀、925銀、銅、鋁等延展性較好的金屬 。