大肉大捧一进一出视频来了,肉嫁高柳1~4动漫在线观看,四虎影院176,波多野42部无码喷潮

閾值電壓

閾值電壓 ( Threshold voltage):通常將傳輸特性曲線中輸出電流隨輸入電壓改變而急劇變化轉折區的中點對應的輸入電壓稱為閾值電壓.在描述不同的器件時具有不同的參數。如描述場發射的特性時,電流達到10mA時的電壓被稱為閾值電壓。

閾值電壓基本信息

中文名 閾值電壓 外文名 The threshold voltage
性????質 專業術語 領????域 物理學

一個特定的晶體管的閾值電壓和很多因素有關,包括backgate的摻雜,電介質的厚度,柵極材質和電介質中的過剩電荷。

閾值電壓背柵的摻雜

背柵(backgate)的摻雜是決定閾值電壓的主要因素。如果背柵摻雜越重,它就越難反轉。要反轉就要更強的電場,閾值電壓就上升了。MOS管的背柵摻雜能通過在介電層表面下的稍微的implant來調整。這種implant被叫做閾值調整implant(或Vt調整implant)??紤]一下Vt調整implant對NMOS管的影響。如果implant是由受主組成的,那么硅表面就更難反轉,閾值電壓也升高了。如果implant是由施主組成的,那么硅表面更容易反轉,閾值電壓下降。如果注入的donors夠多,硅表面實際上就反向摻雜了。這樣,在零偏置下就有了一薄層N型硅來形成永久的溝道(channel)。隨著柵極偏置電壓的上升,溝道變得越來越強的反轉。隨著柵極偏置電壓的下降,溝道變的越來越弱,最后消失了。這種NMOS管的閾值電壓實際上是負的。這樣的晶體管稱為耗盡模式NMOS,或簡單的叫做耗盡型NMOS。相反,一個有正閾值電壓的的NMOS叫做增強模式NMOS,或增強型NMOS。絕大多數商業化生產的MOS管是增強型器件,但也有一些應用場合需要耗盡型器件。耗盡型PMOS也能被生產出來。這樣的器件的閾值電壓是正的。耗盡型的器件應該盡量的被明確的標識出來。不能靠閾值電壓的正負符號來判斷,因為通常許多工程師忽略閾值電壓的極性。因此,應該說“閾值電壓為0.7V的耗盡型PMOS”而不是閾值電壓為0.7V的PMOS。很多工程師會把后者解釋為閾值電壓為-0.7V的增強型PMOS而不是閾值電壓為 0.7V的耗盡型PMOS。明白無誤的指出是耗盡型器件可以省掉很多誤會的可能性。

閾值電壓電介質

電介質在決定閾值電壓方面也起了重要作用。厚電介質由于比較厚而削弱了電場。所以厚電介質使閾值電壓上升,而薄電介質使閾值電壓下降。理論上,電介質成分也會影響電場強度。而實際上,幾乎所有的MOS管都用純二氧化硅作為gate dielectric。這種物質可以以極純的純度和均勻性生長成非常薄的薄膜;其他物質跟它都不能相提并論。因此其他電介質物質只有很少的應用。(也有用高介電常數的物質比如氮化硅作為gate dielectric的器件。有些作者把所有的MOS類晶體管,包括非氧化物電介質,稱為insulated-gate field effect transistor(IGFET))

閾值電壓柵極的物質成分

柵極(gate)的物質成分對閾值電壓也有所影響。如上所述,當GATE和BACKGATE短接時,電場就施加在gate oxide上。這主要是因為GATE和BACKGATE物質之間的work function差值造成的。大多數實際應用的晶體管都用重摻雜的多晶硅作為gate極。改變多晶硅的摻雜程度就能控制它的work function。

閾值電壓介電層與柵極界面上過剩的電荷

GATE OXIDE或氧化物和硅表面之間界面上過剩的電荷也可能影響閾值電壓。這些電荷中可能有離子化的雜質原子,捕獲的載流子,或結構缺陷。電介質或它表面捕獲的電荷會影響電場并進一步影響閾值電壓。如果被捕獲的電子隨著時間,溫度或偏置電壓而變化,那么閾值電壓也會跟著變化。2100433B

閾值電壓造價信息

市場價 信息價 詢價
材料名稱 規格/型號 市場價
(除稅)
工程建議價
(除稅)
行情 品牌 單位 稅率 供應商 報價日期
電壓 品種:斷路器附件;型號:30;流規格:250A; 查看價格 查看價格

新馳

13% 西安新馳電氣有限公司
電壓 品種:斷路器附件;型號:30;說明:注;流規格:125A; 查看價格 查看價格

新馳

13% 西安新馳電氣有限公司
電壓 品種:斷路器附件;型號:30;說明:注;流規格:800A; 查看價格 查看價格

新馳

13% 西安新馳電氣有限公司
電壓 品種:斷路器附件;型號:30;流規格:125A; 查看價格 查看價格

新馳

13% 西安新馳電氣有限公司
電壓 品種:斷路器附件;型號:30;說明:注;流規格:63A; 查看價格 查看價格

新馳

13% 西安新馳電氣有限公司
電壓 品種:斷路器附件;型號:30;流規格:800A; 查看價格 查看價格

新馳

13% 西安新馳電氣有限公司
電壓 品種:斷路器附件;型號:30;說明:注;流規格:1250A; 查看價格 查看價格

新馳

13% 西安新馳電氣有限公司
電壓 品種:斷路器附件;型號:30;流規格:400A; 查看價格 查看價格

新馳

13% 西安新馳電氣有限公司
材料名稱 規格/型號 除稅
信息價
含稅
信息價
行情 品牌 單位 稅率 地區/時間
木工 600mm 查看價格 查看價格

臺·月 深圳市2010年7月信息價
木工 600mm 查看價格 查看價格

臺·月 深圳市2010年5月信息價
木工 600mm 查看價格 查看價格

臺·月 深圳市2010年4月信息價
木工 600mm 查看價格 查看價格

臺·月 深圳市2010年6月信息價
木工刨床 刨削寬度單面600 查看價格 查看價格

臺班 汕頭市2012年4季度信息價
木工刨床 刨削寬度單面600 查看價格 查看價格

臺班 汕頭市2012年2季度信息價
木工刨床 刨削寬度單面600 查看價格 查看價格

臺班 汕頭市2012年2季度信息價
木工刨床 刨削寬度三面400 查看價格 查看價格

臺班 汕頭市2012年2季度信息價
材料名稱 規格/需求量 報價數 最新報價
(元)
供應商 報價地區 最新報價時間
電壓轉換 LW8-10YH3/3|1個 2 查看價格 四川威特電力設備有限公司 四川   2018-01-25
電壓轉換 LW8-10YH3/3|1個 1 查看價格 重慶華美電氣有限公司 四川   2018-01-09
電壓 QSM1QS90、 225型(3極)|7167個 1 查看價格 澳洲奇勝電器(北京)有限公司 北京  北京市 2015-12-16
電壓 QSM1QS90、800型(4極)|2815個 1 查看價格 澳洲奇勝電器(北京)有限公司 北京  北京市 2015-12-02
電壓 QSM1QS90 、100型(3極)|2224個 1 查看價格 澳洲奇勝電器(北京)有限公司 北京  北京市 2015-10-24
電壓 QSM1QS90 、225型(4極)|915個 1 查看價格 澳洲奇勝電器(北京)有限公司 北京  北京市 2015-08-19
電壓 QSM1QS90 、63型(4極)|8980個 1 查看價格 澳洲奇勝電器(北京)有限公司 北京  北京市 2015-07-11
電壓 QSM1QS90、 63型(3極)|9786個 1 查看價格 澳洲奇勝電器(北京)有限公司 北京  北京市 2015-06-12

如MOS管,當器件由耗盡向反型轉變時,要經歷一個 Si 表面電子濃度等于空穴濃度的狀態。此時器 件處于臨界導通狀態,器件的柵電壓定義為閾值電壓,它是MOSFET的重要參數之一 。MOS管的閾值電壓等于背柵(backgate)和源極(source)接在一起時形成溝道(channel)需要的柵極(gate)對source偏置電壓。如果柵極對源極偏置電壓小于閾值電壓,就沒有溝道(channel)。

閾值電壓常見問題

  • 端電壓和線電壓

    端電壓是對零電壓(將零線視為參考點),通常也等于對地電壓。線電壓是相間電壓通常端電壓220v,線電壓380v

  • 低電壓如何變成高電壓?

    低電壓如何變成高電壓?不同的電源用不同的升壓方法、不同的電壓、不同的功率采用不同的升壓方法。(1)交流電源常見通過變壓器升壓。(2)小電流通過倍壓整流升壓(3)直流過振蕩產生高壓(3)直流通過逆變升壓

  • 電壓表 一般測出的是相電壓 還是線電壓?

    你是學生吧?學生實驗里面測得的數據要根據你所測三相電鏈接方式:星形鏈接的測出的是相電壓,線電流;三角形鏈接測得的是線電壓、相電流。

閾值電壓文獻

基于雙電源電壓和雙閾值電壓的全局互連性能優化 基于雙電源電壓和雙閾值電壓的全局互連性能優化

格式:pdf

大?。?span id="d8jxpo9" class="single-tag-height">195KB

頁數: 8頁

評分: 4.4

基于雙電源電壓和雙閾值電壓技術,提出了一種優化全局互連性能的新方法.文中首先定義了一個包含互連延時、帶寬和功耗等因素的品質因子用以描述全局互連特性,然后在給定延時犧牲的前提下,通過最大化品質因子求得優化的雙電壓數值用以節省功耗.仿真結果顯示,在65nm工藝下,針對5%,10%和20%的允許犧牲延時,所提方法相較于單電壓方法可分別獲得27.8%,40.3%和56.9%的功耗節省.同時發現,隨著工藝進步,功耗節省更加明顯.該方法可用于高性能全局互連的優化和設計.

立即下載
低閾值電壓RF MEMS開關的力學模型 低閾值電壓RF MEMS開關的力學模型

格式:pdf

大?。?span id="qy7ubgd" class="single-tag-height">195KB

頁數: 5頁

評分: 4.6

采用大激勵極板的螺旋型膜開關在保持優異的高頻特性的同時 ,可以獲得較低的閾值電壓。但是對這種結構的設計缺乏足夠理論分析。文中將在 Ansys軟件數值求解的基礎上 ,研究缺口尺寸和開關閾值電壓的關系 ,其結果對設計低驅動開關有一定指導意義

立即下載
晶體管閾值電壓(Threshold voltage):

場效應晶體管(FET)的閾值電壓就是指耗盡型FET的夾斷電壓與增強型FET的開啟電壓。

(1)對于JFET:

對于長溝道JFET,一般只有耗盡型的器件;SIT(靜電感應晶體管)也可以看成為一種短溝道JFET,該器件就是增強型的器件。

(2)對于MOSFET:

*增強型MOSFET的閾值電壓VT是指剛剛產生出溝道(表面強反型層)時的外加柵電壓。

①對于理想的增強型MOSFET(即系統中不含有任何電荷狀態,在柵電壓Vgs = 0時,半導體表面的能帶為平帶狀態),閾值電壓可給出為VT = ( SiO2層上的電壓Vi ) + 2ψb = -[2εεo q Na ( 2ψb )] / Ci + 2ψb ,式中Vi ≈ (耗盡層電荷Qb) / Ci,Qb =-( 2εεo q Na [ 2ψb ] ),Ci是單位面積的SiO2電容,ψb是半導體的Fermi勢(等于本征Fermi能級Ei與Ef之差)。

②對于實際的增強型MOSFET,由于金屬-半導體功函數差φms 和Si-SiO2系統中電荷的影響, 在Vgs = 0時半導體表面能帶即已經發生了彎曲,從而需要另外再加上一定的電壓——“平帶電壓”才能使表面附近的能帶與體內拉平。

因為金屬-半導體的功函數差可以用Fermi勢來表示:φms = (柵金屬的Fermi勢ψG )-(半導體的Fermi勢ψB ) ,ψb = ( kT/q ) ln(Na/ni) ,對多晶硅柵電極(通常是高摻雜),ψg≈±0.56 V [+用于p型, -用于n型柵]。而且SiO2/Si 系統內部和界面的電荷的影響可用有效界面電荷Qf表示。從而可給出平帶電壓為 Vfb = φms-Qf /Ci 。

所以,實際MOSFET的閾值電壓為VT = -[2εεo q Na ( 2ψb )] /Ci + 2ψb +φms-Qf /Ci 。

進一步,若當半導體襯底還加有反向偏壓Vbs時,則將使溝道下面的耗盡層寬度有一定的增厚, 從而使閾值電壓變化為:VT = -[2εεo q Na ( 2ψb+Vbs )] /Ci + 2ψb +φms-Qf /Ci 。

在制造MOSFET時,為了獲得所需要的VT值和使VT值穩定,就需要采取若干有效的技術措施;這里主要是控制Si-SiO2系統中電荷Qf :其中的固定正電荷(直接影響到VT值的大小) 與半導體表面狀態和氧化速度等有關(可達到<1012/cm2); 而可動電荷 (影響到VT值的穩定性) 與Na+等的沾污有關。因此特別需要注意在氧化等高溫工藝過程中的清潔度。

*耗盡型MOSFET的閾值電壓VT是指剛好夾斷溝道時的柵極電壓。情況與增強型器件的類似。

(3)對于BJT,閾值電壓VTB是指輸出電流Ic等于某一定值Ict (如1mA) 時的Vbe值。由VTB = (kT/q) ln(Ict/Isn) 得知:a)凡是能導致Ic發生明顯變化的因素 (如摻雜濃度和結面積等),卻對VTB影響不大,則BJT的VTB可控性較好;b) VTB 對于溫度很敏感,將隨著溫度的升高而靈敏地降低,則可用VTB值來感測溫度。?

包裝清單

晶體管閾值電壓(Threshold voltage):

場效應晶體管(FET)的閾值電壓就是指耗盡型FET的夾斷電壓與增強型FET的開啟電壓。

(1)對于JFET:

對于長溝道JFET,一般只有耗盡型的器件;SIT(靜電感應晶體管)也可以看成為一種短溝道JFET,該器件就是增強型的器件。

(2)對于MOSFET:

*增強型MOSFET的閾值電壓VT是指剛剛產生出溝道(表面強反型層)時的外加柵電壓。

①對于理想的增強型MOSFET(即系統中不含有任何電荷狀態,在柵電壓Vgs = 0時,半導體表面的能帶為平帶狀態),閾值電壓可給出為VT = ( SiO2層上的電壓Vi ) 2ψb = -[2εεo q Na ( 2ψb )] / Ci 2ψb ,式中Vi ≈ (耗盡層電荷Qb) / Ci,Qb =-( 2εεo q Na [ 2ψb ] ),Ci是單位面積的SiO2電容,ψb是半導體的Fermi勢(等于本征Fermi能級Ei與Ef之差)。

②對于實際的增強型MOSFET,由于金屬-半導體功函數差φms 和Si-SiO2系統中電荷的影響, 在Vgs = 0時半導體表面能帶即已經發生了彎曲,從而需要另外再加上一定的電壓——“平帶電壓”才能使表面附近的能帶與體內拉平。

因為金屬-半導體的功函數差可以用Fermi勢來表示:φms = (柵金屬的Fermi勢ψG )-(半導體的Fermi勢ψB ) ,ψb = ( kT/q ) ln(Na/ni) ,對多晶硅柵電極(通常是高摻雜),ψg≈±0.56 V [ 用于p型, -用于n型柵]。而且SiO2/Si 系統內部和界面的電荷的影響可用有效界面電荷Qf表示。從而可給出平帶電壓為 Vfb = φms-Qf /Ci 。

所以,實際MOSFET的閾值電壓為VT = -[2εεo q Na ( 2ψb )] /Ci 2ψb φms-Qf /Ci 。

進一步,若當半導體襯底還加有反向偏壓Vbs時,則將使溝道下面的耗盡層寬度有一定的增厚, 從而使閾值電壓變化為:VT = -[2εεo q Na ( 2ψb Vbs )] /Ci 2ψb φms-Qf /Ci 。

在制造MOSFET時,為了獲得所需要的VT值和使VT值穩定,就需要采取若干有效的技術措施;這里主要是控制Si-SiO2系統中電荷Qf :其中的固定正電荷(直接影響到VT值的大小) 與半導體表面狀態和氧化速度等有關(可達到<1012/cm2); 而可動電荷 (影響到VT值的穩定性) 與Na 等的沾污有關。因此特別需要注意在氧化等高溫工藝過程中的清潔度。

*耗盡型MOSFET的閾值電壓VT是指剛好夾斷溝道時的柵極電壓。情況與增強型器件的類似。

(3)對于BJT,閾值電壓VTB是指輸出電流Ic等于某一定值Ict (如1mA) 時的Vbe值。由VTB = (kT/q) ln(Ict/Isn) 得知:a)凡是能導致Ic發生明顯變化的因素 (如摻雜濃度和結面積等),卻對VTB影響不大,則BJT的VTB可控性較好;b) VTB 對于溫度很敏感,將隨著溫度的升高而靈敏地降低,則可用VTB值來感測溫度。 2100433B

mos晶體管閾值電壓

MOS管的閾值電壓等于backgate和source接在一起時形成channel需要的gate對source偏置電壓。如果gate對source偏置電壓小于閾值電壓,就沒有channel。一個特定的晶體管的閾值電壓和很多因素有關,包括backgate的摻雜,電介質的厚度,gate材質和電介質中的過剩電荷。每個因素都會被簡單的介紹下。

Bakegate的摻雜是決定閾值電壓的主要因素。如果backgate越重摻雜,它就越難反轉。要反轉就要更強的電場,閾值電壓就上升了。MOS管的backgate摻雜能通過在gate dielectric表面下的稍微的implant來調整。這種implant被叫做閾值調整implant(或Vt調整implant)。

考慮一下Vt調整implant對NMOS管的影響。如果implant是由acceptors組成的,那么硅表面就更難反轉,閾值電壓也升高了。如果implant是由donors組成的,那么硅表面更容易反轉,閾值電壓下降。如果注入的donors夠多,硅表面實際上就反向摻雜了。這樣,在零偏置下就有了一薄層N型硅來形成永久的channel。隨著GATE偏置電壓的上升,channel變得越來越強的反轉。隨著GATE偏置電壓的下降,channel變的越來越弱,最后消失了。這種NMOS管的閾值電壓實際上是負的。這樣的晶體管稱為耗盡模式NMOS,或簡單的叫做耗盡型NMOS。相反,一個有正閾值電壓的的NMOS叫做增強模式NMOS,或增強型NMOS。絕大多數商業化生產的MOS管是增強型器件,但也有一些應用場合需要耗盡型器件。耗盡型PMOS也能被生產出來。這樣的器件的閾值電壓是正的。

耗盡型的器件應該盡量的被明確的標識出來。不能靠閾值電壓的正負符號來判斷,因為通常許多工程師忽略閾值電壓的極性。因此,應該說“閾值電壓為0.7V的耗盡型PMOS”而不是閾值電壓為0.7V的PMOS。很多工程師會把后者解釋為閾值電壓為-0.7V的增強型PMOS而不是閾值電壓為+0.7V的耗盡型PMOS。明白無誤的指出是耗盡型器件可以省掉很多誤會的可能性。

為了區別不同的MOS管有很多特殊的符號。圖7就是這些符 號。(符號A,B,E,F,G,和H被許多不同的作者使用)符號A和B分別是NMOS和PMOS管的標準符號。這些符號在工業界沒有被普遍使用;相反,符號C和D分別代表NMOS和PMOS。這些符號被設計的很像NPN和PNP管。這么做能突出MOS和雙極型電路之間基本的相似點。符號E和F用在backgates接到已知電位上時。每個MOS管都有一個backgate,所以它總得接到什么地方。符號E和F可能有點讓人看不懂,因為讀者必須自己推斷bakgate的接法。盡管如此,這些符號還是非常流行,因為他們使電路同看上去更易讀。符號G和H經常被用在耗盡型器件上,符號中從drain到source的粗線就表示了零偏置時的channel。符號I和J表示高電位drain的非對稱晶體管,符號K和L表示drain和source都是高電位的對稱晶體管。除了這些,MOS管還有其他很多電路符號;圖1.24僅僅是其中的一小部分。

電介質在決定閾值電壓方面也起了重要作用。厚電介質由于比較厚而削弱了電場。所以厚電介質使閾值電壓上升,而薄電介質使閾值電壓下降。理論上,電介質成分也會影響電場強度。而實際上,幾乎所有的MOS管都用純二氧化硅作為gate dielectric。這種物質可以以極純的純度和均勻性生長成非常薄的薄膜;其他物質跟它都不能相提并論。因此其他電介質物質只有很少的應用。(也有用高介電常數的物質比如氮化硅作為gate dielectric的器件。有些作者把所有的MOS類晶體管,包括非氧化物電介質,稱為insulated-gate field effect transistor(IGFET))

gate的物質成分對閾值電壓也有所影響。如上所述,當GATE和BACKGATE短接時,電場就出現在gate oxide上。這主要是因為GATE和BACKGATE物質之間的work function差值造成的。大多數實際應用的晶體管都用重摻雜的多晶硅作為gate極。改變多晶硅的摻雜程度就能控制它的work function。

GATE OXIDE或氧化物和硅表面之間界面上過剩的電荷也可能影響閾值電壓。這些電荷中可能有離子化的雜質原子,捕獲的載流子,或結構缺陷。電介質或它表面捕獲的電荷會影響電場并進一步影響閾值電壓。如果被捕獲的電子隨著時間,溫度或偏置電壓而變化,那么閾值電壓也會跟著變化。

閾值電壓相關推薦
  • 相關百科
  • 相關知識
  • 相關專欄
主站蜘蛛池模板: 孝感市| 乐山市| 庆安县| 台南市| 宁德市| 手机| 宝清县| 台江县| 盐山县| 临海市| 美姑县| 锡林浩特市| 连州市| 工布江达县| 苍梧县| 白朗县| 岳普湖县| 黎城县| 张家口市| 淮北市| 闸北区| 柳河县| 和林格尔县| 资溪县| 福州市| 林甸县| 沙田区| 澄江县| 阳春市| 巴青县| 肇庆市| 志丹县| 雅江县| 湘阴县| 平舆县| 昌邑市| 贵溪市| 张家口市| 晴隆县| 孝昌县| 新晃|