中文名 | 載流子遷移率 | 外文名 | Carrier mobility |
---|---|---|---|
釋????義 | 在單位電場作用下的平均漂移速度 | 一般是 | 電子的遷移率高于空穴 |
決????定 | 半導體材料的電導率的大小 |
遷移率是衡量半導體導電性能的重要參數,它決定半導體材料的電導率,影響器件的工作速度。對于載流子遷移率已有諸多文章對載流子遷移率的重要性進行了研究 。遷移率
式中
遷移率是反映半導體中載流子導電能力的重要參數,同樣的摻雜濃度,載流子的遷移率越大,半導體材料的導電率越高。遷移率的大小不僅關系著導電能力的強弱,而且還直接決定著載流子運動的快慢。它對半導體器件的工作速度有直接的影響。
電導率和遷移率之間的關系為
在恒定電場的作用下,載流子的平均漂移速度只能取一定的數值,這意味著半導體中的載流子并不是不受任何阻力,不斷被加速的。事實上,載流子在其熱運動的過程中,不斷地與晶格、雜質、缺陷等發生碰撞,無規則的改變其運動方向,即發生了散射。無機晶體不是理想晶體,而有機半導體本質上既是非晶態,所以存在著晶格散射、電離雜質散射等,因此載流子遷移率只能有一定的數值。
渡越時間(TOP)法適用于具有較好的光生載流子功能的材料的載流子遷移率的測量,可以測量有機材料的低遷移率。
在樣品上加適當直流電壓,選側適當脈沖寬度的脈沖光,通過透明電極激勵樣品產生薄層的電子一空穴對。空穴被拉到負電極方向,作薄層運動。設薄層狀況不變,則運動速度為μE。如假定樣品中只有有限的陷阱,且陷阱密度均勻,則電量損失與載流子壽命τ有關,此時下電極上將因載流子運動形成感應電流,且隨時間增加。在t時刻有:
若式中L為樣品厚度電場足夠強,
在
霍爾效應法主要適用于較大的無機半導體載流子遷移率的測量。
將一塊通有電流I的半導體薄片置于磁感應強度為B的磁場中,則在垂直于電流和磁場的薄片兩端產生一個正比于電流和磁感應強度的電勢U,這稱為霍爾效應。由于空穴、電子電荷符號相反,霍爾效應可直接區分載流子的導電類型,測量到的電場可以表示為
通過監控電暈充電試樣的表面電壓衰減來測量載流子的遷移率。充電試樣存積的電荷從頂面向接地的底電極泄漏,最初向下流動的電荷具有良好的前沿,可以確定通過厚度為L的樣品的時間,進而可確定材料的
輻射誘發導電率(SIC)法適合于導電機理為空間電荷限制導電性材料。
在此方法中,研究樣品上面一半經受連續的電子束激發輻照,產生穩態SIC,下面一半材料起著注入接觸作用。然后再把此空間電荷限制電流(SCLC)流向下方電極。根據理論分析SCLC電導電流與遷移率的關系為
測量電子束電流、輻照能量和施加電壓函數的信號電流,即可推算出
將被測量的半導體薄膜放在有壓電晶體產生的場表面波場范圍內,則與場表面波相聯系的電場耦合到半導體薄膜中并且驅動載流子沿著聲表面波傳輸方向移動,設置在樣品上兩個分開的電極檢測到聲一電流或電壓,表達式為
式中P為聲功率,L為待測樣品兩極間距離,
在極性完全封閉時加外電場,離子將在電極附近聚集呈薄板狀,引起空間電荷效應。當將外電場極性反轉時,載流子將以板狀向另一電極遷移。由于加在載流子薄層前、后沿的電場影響,因而在極性反轉后t時間時,電流達到最大值。t相當于載流子薄層在樣品中行走的時間,結合樣品的厚度、電場等情況,即可確定
本方法主要適用于工作于常溫下的MOSFET反型層載流子遷移率的測量。
對于一般的MOSFET工作于高溫時,漏源電流Ids等于溝道電流Ich與泄漏電流Ir兩者之和,但當其工作于常溫時,泄漏電流Ir急劇減小,近似為零,使得漏源電流Ids即為溝道電流Ich。因此,對于一般的MOSFET反型層載流子遷移率,可以根據測量線性區I—V特性求的。
綜上共指出了7種載流子遷移率的測量方法,除此之外,還可采用漂移實驗、分析離子擴散、分析熱釋電流極化電荷瞬態響應等方法進行載流子遷移率的測量。 2100433B
電子運動速度等于遷移率乘以電場強度
遷移率主要影響到晶體管的兩個性能:
一是和載流子濃度一起決定半導體材料的電導率(電阻率的倒數)的大小。遷移率越大,電阻率越小,通過相同電流時,功耗越小,電流承載能力越大。由于電子的遷移率一般高于空穴的遷移率,因此,功率型MOSFET通常總是采用電子作為載流子的n溝道結構,而不采用空穴作為載流子的p溝道結構。
二是影響器件的工作頻率。雙極晶體管頻率響應特性最主要的限制是少數載流子渡越基區的時間。遷移率越大,需要的渡越時間越短,晶體管的截止頻率與基區材料的載流子遷移率成正比,因此提高載流子遷移率,可以降低功耗,提高器件的電流承載能力,同時,提高晶體管的開關轉換速度。
一般來說P型半導體的遷移率是N型半導體的1/3到1/2.。
1,凡需要遷移戶口的;必須收當事人提出申請; 2,提供當事人身份證、、結婚證、房屋產權證等資料; 3,并經過戶口所在地村(居)委出具是否同意遷移的意見; 4,戶口接收地村委或者居委會出具...
辦理材料 1.軍官、文職干部家屬隨軍戶口遷入市區:隨軍家屬。 家屬本人要求隨軍落戶報告;《干部申請家屬隨軍報告表》;干部隨遷家屬、子女名單;干部申請家屬隨軍審批表;房屋調撥單或其他房產證明;結婚證(原...
第一步:向遷入地派出所提出申請 第二步:遷入地派出所同意遷入 第三步;向現戶口所在地派出所提出遷出申請 第四步:戶口所在地派出所籍證明 第五步:持戶籍證明和相關證明材料(主要是法院判決女兒歸你的判決書...
格式:pdf
大小:323KB
頁數: 5頁
評分: 4.6
本文提出利用IMA測量介質膜中可動離子漂移遷移率的新方法,并用該方法測量了熔凝玻璃膜中Na~+漂移遷移率,研究了Na~+遷移率與溫度的關系。
格式:pdf
大小:323KB
頁數: 6頁
評分: 4.3
通過實驗和數值器件仿真研究了鈍化GaN高電子遷移率晶體管(HEMTs)、柵場板GaNHEMTs和柵源雙層場板GaNHEMTs電流崩塌現象的物理機理,建立了電流崩塌強度與帽層中載流子濃度、陷阱電離率和電場的內在聯系.研究結果表明,場板可以有效調制帽層中橫向和縱向電場的強度分布,并可有效調制縱向電場的方向,減弱柵極附近電場強度,增加場板下方電場強度,這會減弱柵極附近自由電子的橫向運動,增強場板下方自由電子的縱向運動,進而可以有效調制帽層中自由電子濃度的分布,提高陷阱的電離率,減小器件的電流崩塌.
載流子壽命life time of carriers
非平衡載流子在復合前的平均生存時間,是非平衡載流子壽命的簡稱。在熱平衡情況下,電子和空穴的產生率等于復合率,兩者的濃度維持平衡。在外界條件作用下(例如光照),將產生附加的非平衡載流子,即電子—空穴對;外界條件撤消后,由于復合率大于產生率,非平衡載流子將逐漸復合消失掉,最后回復到熱平衡態。非平衡載流子濃度隨時間的衰減規律一般服從exp(-t/τ)的關系,常數τ表示非平衡載流子在復合前的平均生存時間,稱為非平衡載流子壽命。在半導體器件中,由于非平衡少數載流子起主導作用,因此τ常稱為非平衡少數載流子壽命,簡稱少子壽命。τ值范圍一般是10-1~103μs。復合過程大致可分為兩種:電子在導帶和價帶之間直接躍遷,引起一對電子—空穴的消失,稱為直接復合;電子—空穴對也可能通過禁帶中的能級(復合中心)進行復合,稱為間接復合。每種半導體的τ并不是取固定值,將隨化學成分和晶體結構的不同而大幅度變化,因此,壽命是一種結構靈敏參數。τ值并不總是越大越好。對于Si單晶棒和晶體管的靜態特性來說,希望τ值大些。但是,對于在高頻下使用的開關管,卻往往需要摻雜(擴散金),以增加金雜質復合中心,降低τ值,提高開關速度。在電力電子器件生產中,常用電子束輻照代替摻金,降低τ值。在Si和GaAs材料、器件和集成電路生產過程中,τ值是必須經常檢測的重要參數。
載流子,是承載電荷的、能夠自由移動以形成電流的物質粒子。半導體的性質跟導體和絕緣體不同,是因為其能帶結構不同;而半導體的導電能力可以控制,主要是因為其載流子的種類和數量與導體和絕緣體不同,并且可以受到控制,其調節手段就是“摻雜”,即往純凈的半導體中摻入雜質,來改變其載流子數量、分布和運動趨勢,從而改變整體導電性能。
絕緣體和金屬導體的載流子是電子,而半導體除了電子外,還有一種載流子叫空穴。另外還有正離子、負離子也都帶有電荷,但是在半導體中,它們一般不會流動,所以認為半導體的載流子就是電子和空穴這兩種。
電子作為載流子容易理解,因為物質中的原子是由原子核和電子組成的,在一定條件下掙脫原子核束縛的自由電子可以運動,因而產生電流。而所謂空穴,就是由于電子的缺失而留下的空位。這就好像車與車位的關系,假設有一排共5個車位,從左邊開始按順序停了4輛車,最右邊有1個空位,如果最左邊的車開到最右邊的空位上去,那么最左邊的車位就空出來了。看起來好像是空位從右邊到了左邊,這是一種相對運動,車從左到右的移動,相當于空位從右到左的移動。同樣道理,帶負電的電子的運動,可看作是帶正電的空穴的反方向運動。在沒有雜質的純凈半導體中,受熱激發產生的移動的電子數量和空穴數量是相等的,因為帶負電的電子和帶正電的空穴會進行復合,在數量大致相等的情況下,“產生”和“復合”會達到一個動態平衡,這樣宏觀上看來并沒有產生有效電流。為了改善其導電性能,就引入了摻雜手段。
對集成電路來說,最重要的半導體材料是硅。硅原子有4個價電子,它們位于以原子核為中心的四面體的4個頂角上。這些價電子會與其他硅原子的價電子結合成共價鍵,大量的硅原子以這種方式互相結合,形成結構規律的晶體。如果給它加入砷(或磷),砷最外層有5個電子,其中4個電子也會跟硅原子的4個價電子結合成共價鍵,把砷原子固定在硅材料的晶格中。此時會多出1個自由電子,這個電子躍遷至導帶所需的能量較低,容易在硅晶格中移動,從而產生電流。這種摻入了能提供多余電子的雜質而獲得導電能力的半導體稱為N型半導體,“N”為Negative,代表帶負電荷的意思。如果我們在純硅中摻入硼(B),因為硼的價電子只有3個,要跟硅原子的4個價電子結合成共價鍵,就需要吸引另外的1個電子過來,這樣就會形成一個空穴,作為額外引入的載流子,提供導電能力。這種摻入可提供空穴的雜質后的半導體,叫做P型半導體,“P”是Positive,代表帶來正電荷的意思。
需要注意的是,摻入雜質后的半導體中仍然同時具有電子和空穴這兩種載流子,只是各自數量不同。在N型半導體中,電子(帶負電荷)居多,叫多數載流子,空穴(帶正電荷)叫少數載流子。在P型半導體中,則反之:空穴為多數載流子,電子為少數載流子;可以分別簡稱為“多子”、“少子”。2100433B
在本征半導體中只發生熱激發時,電子數目等于空穴數目,這時熱平衡載流子濃度為
式中m0為電子質量,kg;mn*為電子有效質量,kg; mp*為空穴有效質量,kg;k為玻耳茲曼常數,J/K;Eg為禁帶寬度,eV;ni為本征載流子濃度,cm-3;T為絕對溫度,K。
對于雜質半導體,N型半導體中的電子和P型半導體中的空穴稱為多數載流子(簡稱多子),而N型半導體中的空穴和P型半導體中的電子稱為少數載流子(簡稱少子)。在強電離的情況下,N型半導體中多子濃度nn及少子濃度pn分別為
P型半導體中多子濃度pp及少子濃度np分別為
上二式中ND為施主雜質濃度,cm-3;NA為受主雜質濃度,cm-3。
如果對半導體施加外界作用(如用光的或電的方法),破壞了熱平衡條件,使半導體處于與熱平衡狀態相偏離的狀態,則稱為非平衡狀態。處于非平衡狀態的半導體,其載流子比平衡狀態時多出來的那一部分載流子稱為非平衡載流子。在N型半導體中,把非平衡電子稱為非平衡多數載流子,非平衡空穴稱為非平衡少數載流子。對P型半導體則相反。在半導體器件中,非平衡少數載流子往往起著重要的作用。